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1

* Introduction

Statement of the problem

04ri motivation is to find asymptotically more accurate confi-

dence intervals for the steady state mean of a simulated process.

By this -we mea,that the coverage probability error for the con-

fidence intervals we derive should be of lower order than that of

standard confidence intervals. There are several standard methods

of setting confidence intervals in simulations, including the regener-

ative method, batch means, and time series methods. We-will focus-s

on improved confidence intervals for the mean of an autoregressive

process, and as such our results are useful outside of a simulation

setting.

Improved methodology for setting simulation confidence inter-

vals is an area of active research. A recent survey article, LAW AND

KELTON (1984), states

One of the mosl important but difficult problems encoun-

%1
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INTRODUCTION 2

tered in a real-world simulation study is that of construct-
*. ing a confidence interval (c.i.) for the steady state mean

is of a stochastic proces. The information contained iD
such a c.i. provides the decision maker with a measure of

how precisely a is known. Constructing the c.i., however,
is difficult because the output data from a simulation are
in general non-stationary and autocorrelated, so that di-
rect application of the techinques of classical statistics is

precluded.

Almost none of the work on confidence intervals aims to improve

the asymptotic order of confidence interval accuracy, however. If we

use standard methods to set a nominal 90 percent confidence interval

for the mean of the process, the true proportion of the time that

the actual mean falls within our interval will be 0.9 plus an error

term which is typically 0(n- 1). The error in half-coverage, that

is the difference between 0.45 and the true proportion of the time

that the actual mean falls in one half of the nominal interval, is of

order 0(n- 1 /2). Most work attempts to improve the constant factor

implicit in this O(n 1/ 2 ). We will derive a first order correction

which, under reasonable assumptions, reduces the one sided errors

to o(n-1 / 2) and a second order correction which reduces these errors

to o(n- 1 ).

Importance of the problem

In the usual statistical context one feels that a sample size of

n 30 is reasonably large-certainly the t-distribution with 29

degrees of freedom closely approximates the normal distribution,

.o. .
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and one regards normal theory as adequate for forming confidence

intervals for the mean. In forming a confidence interval for the

mean of an asymptotically stationary process, however, one may

need n = 10,000 or greater. To illustrate this, a Monte Carlo study

(discussed in Chapter 5) on the expected stationary waiting time

in an M/M/I queue in light traffic (traffic intensity of 0.5) showed

among other things that the true probability that the sample mean

was greater than the upper limit of a 90 percent confidence interval

was not 0.05 but about 0.14. Various criteria have been suggested

for evaluating confidence intervals, but reasonable accuracy is the

sine qua non of confidence intervals.

For this reason, it is desirable to find more accurate methods to

form confidence intervals for small samples. As mentioned above,

more accurate half coverage is desirable. For example, we might

wish to perform a one-sided test on the estimated mean.

Basic tools and assumptions

We assume we are given a process z = {zi i > 1) which

satisfies a stable autoregressive difference equation,

(1)ao(zi - A) + + a(i-k - A) =i

fori = k+ ,...,n. The e's of the sequence {ei : i > k+ 1) are

zero-mean, independent and identically distributed random vari-

ables with moments of all orders and a density (with respect to

Lebesgue measure) which is positive on an interval. We take the

. . . .."



INTRODUCTION 4

point of view, then, that the simulator or statistician has deter-

mined that such a model is appropriate. If the prediction errors

of the model (epsilons) may only be assumed uncorrelated and not

independent, the first order correction still applies with minor mod-

ifications. If the model of actual interest is in continuous time, this

of course necessitates some method like sampling at discrete inter-

vals. In the regenerative method of forming confidence intervals

for the steady state value of Ef (z(t)), where x(t) is a regenerative

process in continuous time with regeneration times {ti : i > 0), one

would proceed as follows. Let ri be defined as the regenerative cycle

length,
A

i - - ti-l,

and let yi be defined by

yi t f (x(t)) dt.
fi-1

The mean we want to estimate is Ey,/Eri, and we may use the Delta

method to derive the variance of the natural estimate /, 1 , where

, and & are the respective sample means. (See BILLINGSLEY

(1979) for the Delta method). If we are not using the regenerative

method, we could sample the process at fixed intervals, which is

to say that ri is constant, but it may be more convenient to sam-

ple the process at random intervals. For appropriate choices of the

random times (ti i > 0) the joint sequence {(yi, ") : i > 0) as

defined above will still be asymptotically stationary and will still
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obey the bivariate Central Limit Theorem, even though it is not

an independent sequence. In this case, Eyi/Eri is still the natural

point estimate, and the Delta method may be used exactly as be-

fore to derive the same variance constant as one would derive using

the regenerative method. The only difference is that the covariance

matrix of the process {(yi, ri) : i > O} is not as easy to estimate.

One may, however, estimate this covariance matrix using a bivariate

autoregressive model, as in Jow (1983), or some other method. If a

bivariate autoregressive method is used, then the natural extensions

of the methods of this thesis may be used to obtain more accurate

confidence intervals, though this extension to the multivariate au-

toregressive method is not elaborated here. See Fox AND GLYNN

(1983) for further discussion.

The constant y of (1) is the asymptotic mean of the z process,

and ao is assumed equal to one. Note that the sequence of interest,

- = {xi : i > 1), need not be stationary, but it will be asymptotically

stationary. The requirement that the difference equation be strictly

stable is equivalent to the technical condition that all roots of the

characteristic polynomial

kaoz +...+akzo

lie strictly inside the unit circle (see PRIESTLEY (1981)).

If the usual pivot or test statistic based on n sample points

is in, then the first order pivot we will derive will have the form

= t + n + ptnn/ 2 , and the second order pivot will be

.. . . .....



INTRODUCTION 6

= T1 +z.',t n' + 3 -~1 . The pivots T, and T2 depend on n,

but we suppress this dependence in the notation. T, differs from a

standard normal random variable by an error term which is "little

oh" of n-1/2 in probability, written op(n-1/2), and T2 by a term

which is op(n-1 ). Recall that Yn = op(n-) means that n'Yn goes

to zero in probability. These test statistics will be the basis of con-

fidence intervals with coverage error probability of asymptotically

lower order.

The basic tools behind our derivations are the Edgeworth ex-

pansion, and the Cornish-Fisher expansion. KENDALL AND STU-

ART (1977) contains a good introduction to these concepts. The

Edgeworth. expansion is an asymptotic expansion for the central

P4 limit theorem. If <P(z) denotes the standard normal distribution

function and O(z) the standard normal density, the most basic form

of Edgeworth expansion is

P~1/ 2 Fn(y - Ey)/lo < z)

where {y, i > 1} is an independent and identically distributed

sequence satisfying certain moment and smoothness assumptions.

The two x's shown above are 0(n-1/2). Less basic forms of the

expansion will allow the y's to be non-independent and allow the

probability that the normalized sample mean lies in more arbitrary

Borel sets to be estimated. In addition, we usually are concerned

not with the normalized sample mean but with a function of several

normalized sample means.

--~ ~~~~~ ~~~~ ~ ~~~~ .-' .' -- . . .- . ; " .. .- Y - . . ., . -. _" .-" 2 . ,'_, .' : .- -. . . . -. . .- . : .=." ."- . ' . , % .
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The Cornish-Fisher expansion amounts to a polynomial trans-

formation, which transforms the asymptotically normal statistic t,:

to a statistic with a distribution closer to that of the standard nor-

mal distribution. In fact, the first order corrected statistic T, above

is a Cornish-Fisher expansion of t,,, and T2 is a Cornish-Fisher ex-

pansion of T1.

Previous work

There are several large areas of research which provide a basis

for this thesis or which are related to it.

The first such area is that of Edgeworth expansions. Edge-

worth's paper appeared in 1904. The book BHATTACHARYA AND

RAO (1976) provides very good background for the independent and

identically distributed case, as does the paper BHATTACHARYA

AND GHOSH (1978). TANIGUCHI (1984) deals with the time series

context, and GOTZE AND HIPP (1983) prove the validity of Edge-

worth expansions for quite general functions of weakly dependent

random variables.

The original paper of Cornish and Fisher appeared in 1927. See

HILL AND DAVIS (1968) for a more recent study.

Another major area of research is confidence interval methodol-

ogy in general. FISHMAN (1978) provides background and presents

the autorregressive method of simulation output analysis. Jow

(1982) details the autoregressive method for vector processes, and

the articles LAW AND KELTON (1982, 1984) survey simulation ori-

,- ._% % '.



INTRODUCTION 8

ented work, and contain further references. There is also more sta-

tistically oriented research, such as that of Efron cited below. The

electrical engineering literature contains work relevant to confidence

intervals, too. For example, THOMSON (1982) discusses sophisti-

cated methods for spectrum estimation, and though confidence in-

tervals are not specifically mentioned, the problem of estimating the

variance of the sample mean of an asymptotically stationary process

may be viewed as one of spectrum estimation-see Jow (1983) and

PRIESTLEY (1981).

Finally, there is other work which deals with improving the or-

der of confidence interval accuracy. JOHNSON (1978) is perhaps

the first such article. He derives a first order correction for the

usual t-statistic in an independent and identically distributed con-

text. GLYNN (1982a) extends this to a second order correction for

ratio estimation, and the methods of EFRON (1984b) center around

the parametic bootstrap. See also ABRAMOVITCH AND SINGH

(1985) and the articles cited there.

Overview

In Chapter 2 we will develop machinery to help us derive the

actual corrections, though the results of this chapter apply quite gen-

erally to asymptotically stationary sequences. To use the Cornish-

Fisher expansions, we need to estimate moments and cumulants

of some function f(z), where z is a vector of sample means of an

asymptotically stationary sequence. After expanding f in a Taylor

--



INTRODUCTION 9

series, we thus need to estimate various joint moments and cumu-

lants of sample means. One aspect of this is the need to sort out

the contributions to a given cumulant in terms of (negative) powers

of the sample size, n. It is primarily the second section of Chapter

2, "Moment identities," which details this machinery. The first sec-

tion, "Cumulant and moment bounds," facilitates the derivations of

the second section.

In this first section, a result of JAMES (1955, 1958) and JAMES

AND MAYNE (1962) is simplified and extended to weakly dependent

random variables. The result of James asserts that the jth cumu-

lant of a polynomial in the sample average ao + a, (n-1 En z,) 1 +

S.. + ak(n - 1  z) k for independent and identically distributed zi

is O(n'l- ) as n becomes infinite, and this result is referred to by

BHATTACHARYA AND GHOSH (1978) as "an important combina-

torial result."

Chapter 3 shows how to compute certain infinite sums associ-

ated with sequences (on Z*., Z2, etc., where Z is the set of integers

and Z+ is the set of positive integers) which obey homogeneous or

non-homogeneous difference equations. Many expressions for cumu-

lants of functions of the mean of an autoregressive process are of this

type.

Chapter 4 gives the actual derivation of the corrections, along

with an algorithmic summary. Given the methods of Chapters 2

and 3 the derivation is relatively mechanical, though by no means

completely so. Making the Cornish-Fisher correction entails first

I ,,',...-. ._.-> . . - .. . , .' \ . - . ,;.,..,..-. . - .. - . . . . ; . : .. , .
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computing the usual test statistic, t,,. One must also estimate the

third and fourth moments of the residuals ej in the autoregressive

model. If n is the sample size, estimation of covariances of the

underlying sequence and of the moments of e, requires work propor-

tional to 0(n). The rest of the computation requires work of order

0(k3 ), where k is the order of the autoregressive model. The first

order correction is fairly simple, and despite the number of steps the

second order correction is not too computer-intensive.

Finally, we present numerical results in Chapter 5. We consider

two genuine autoregressive processes with independent and identi-

cally distributed residuals. In one case, the residuals have a smooth

density. The second example is the same, except that the residuals

have a lattice distribution. The third model is the M/M/1 queue,

with is not a finite order autoregressive process. The fourth model is

the discrete analog of the M/M/I queue, that is, a random walk on

the nonnegative integers. This variety of models is included to test,

at least in a few instances, the sufficiency of our sufficient conditions

and the necessity of our necessary conditions.

J
4  

. . . . .. Oo S

.- ~~" A ~ % % ~ A~' * ). .
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The algebra of
moments

In this chapter we will develop tools which are very useful for

simplifying moment expressions. For example, to calculate the usual

test statistic (or "pivot") we need to estimate both the mean of the

process of interest and covariances. If the estimate of the mean is

",, and that of the covariance at lag 0 is A(0), in the first order cor-

rection we will need to estimate the covariance of t. and A(O). This

sort of covariance or mixed moment is what we mean by "moment

expression."

First we will obtain a result which shows, under appropriate

conditions, that the Taylor expansion of a function of a sample mean

has cumulants of the same order as the corresponding cumulants of

a sample mean. This result and its generalizations will help us to

derive the higher order moment identities in the second part of this

chapter.

11



THE ALGEBRA OF MOMENTS §2.1 12

Cumulant and moment bounds

2.1 Introduction. Let S, denote the sum zi, where the :i

are mixing and asymptotically stationary (in a sense to be detailed

later) with asymptotic mean zero. If we wish to approximate the

cumulants of V/(f(S,/n) -f(0)), we are lead to consider the cumu-

lants of a Taylor expansion: a, Sn - 1/2  .+akSfl/2-k = p(s).

In case the sequence {zi : i > 1} is independent and identically

distributed and p(S,) = Sn - 112, then the cumulant generating

functions of the polynomial p and of z are related by the formula

bp( ) = nOz(fn-1/2), which shows that the jth cumulant for the

normalized polynomial p, ic,. 1 , is 0(n'-2). JAMES (1955, 1958)

and JAMES AND MAYNE (1962) have shown using the machinery

of Fisher's k-statistics that the same result holds for general p(S,)

when the the sequence {zi : i > 1} is independent and identically

distributed.

Our purpose in this section is to give a simple proof of this fact

and some of its extensions.

Instead of considering the polynomial p, we take v'ip, that is

c$,Sn +"" + a$:knl-k, and we will show that the cumulants are

0(n). We will begin with the case in which the z's are independent,

but we do not require zero means or even identical distributions.

2.2 Review of cuimulants. We record here several facts about

cumulants.

";"'-,''-" -".-" "-"-'"." ,""-,''_,""- .' -"' .,;....................... .4 ... -.. .. ,................. . e . . .. .



THE ALGEBRA OF MOMENTS §2.2 13

(1) The joint cumulant cum(y,. .. ,yk) is given by

where v denotes a partition of {y1,... ,yk) into p sets, where

ps,, is the expected product of those y's in the ith partition,

and where the sum is taken over all partitions (p = 1,... ,k).

For example, cum(yi, y2 ) = Eyy2 - EyEiEy2 .

(2) By definition, cum(yI,. .. ,yk) is the coefficient of a, ... s in

the Taylor expansion of log E exp[i(s, y, + "" + skyh)! = tPy (a)

The function 0 is the cumulant generating function. The jth

cumulant of the univariate distribution of y is the jth derivative

the cumulant generating function at zero, DVpy(O).

(3) The 'th cumulant of y, which is denoted by mi or xi(y), is equal

to cum(y,. . . ,y) (j times). This is evident from the fact that

xj = Dj',(0) = D1.---. 1 (O) = cum(y, .. ,y).

(4) The cumulant cum(zyz,y 2 ,..., y,,) = 0 if z is independent of

the y's and Ez = 0, because Ez then factors out of all the

moments in the expansion of (1) above.

(5) cum(y 1,..., y.) = 0 whenever the y's may be partitioned into

two groups independent of each other. In this case, supposing

(yj,..., yl) is independent of (Y+L,..•, Y),

log Eexp(isry) logEexp(s1y, +. + st y)

+ log Eexp(s9+Iy, + + ... + 3yy),

whose Taylor expan.ion has no s ...si term.

°,-

%" .*.". ~ . .* . - .. - . .*9*.



THE ALGEBRA OF MOMENTS §2.3 14

(6) The ith cumulant of alyL + + 08Y1 - ary is a linear com-

bination of jth order cumulants which we could write as

where v is a multiindex, i - (v1 ,..,z'), &'[ - j means that

v has j ordered elements, and cum(yV) = cum(yvj,.., Ye,). If

01 is the cumulanr generating function of ay and 02 that of

y, then 01(s) = 0 2(as). Taking jth derivatives on both sides

with respect to s now proves the assertion.

(7) The cumulant is symmetric and multilinear. For example, if
S = Fn'=,

cum(S, S2 /n, 3/ ) = n- 3cum (S, 2,S3)

= n  cum(z,, ziz, &zizZ,).

We are now ready to prove the theorem for the independent

case.

2.3 Theorem. Let z" : i > 1} be an independent sequence and

let j and k be positive integers. Suppose that the set of moments

Ez, i.. zi is bounded for I < jk. Then the j th cumulant of a1 S +

•.. + akSn t - k, where S = En, zi, is 0(n) as n -- oo.

Proof. From fact (6) above, the jth cumulant of a,S +... +

akSn 1- k is a linear combination =l,= ,cum(y,), where y =

(,S',.., Skn1k) and where the coefficients 3,, do not depend on n. It

-- ..'. ---'- -- .- . --. ... - --. ' . . . --... . -. . - .



THE ALGEBRA OF MOMENTS §2.3 15

therefore suffices to show that each cum(yu) is 0(n). The expression

cum(y,) means cum(SVL n-p",...,$Sminl-mi) if v=

Notation may obscure the simple idea here, so let us suppose we are

dealing with cum(S, S 2/n, S2 /n, S3 /n 2 ) . That the same argument

applies in general will be obvious.

Fact (7) of the previous subsection shows that this cumulant is

The indexes (i,..., is) come from the set of eight-tuples of positive

integers less than or equal to n, but fact (5) shows that this cumulant

is often zero. In fact, if the four arguments split into two indepen-

dent groups, the cumulant is zero. Therefore we must specify three

constraints (the number of arguments minus one) to make it non-

zero. That is, if each argument is a node and if we regard two nodes

as connected whenever the arguments are dependent, we must have a

connected graph. Two arguments in our context are dependent only

when they share an index-for example z;, and xi, Zi are dependent

only if il = i2 or il = i3 . Note that the possible number of such con-

straints does not depend on n. Thus the cumulant is nonzero only

if the indexes satisfy at least one set of three equality constraints

from a fixed number of j possible sets. It follows that the number

of nonzero terms in the sum E cum(xi, xi, , Xi, i Zi, Zi. ) is

0(n s - 3 ) = 0(n'). Because of our boundedness assumption on mo-

4ments, and taking into account the denominators in the cumulants'

arguments, the total sum is 0(n 5 /n 4) = 0(n) as required.

a S-i 5 ...........................
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In general, each new block zi, zi n n - 1 which is an argument

of the cumulant increases the size of the space of possible indexes

by a factor of ni, but by introducing one additional necessary con-

straint and dividing by n1- , the growth of the sum remains at

0(n). Furthermore, if there is only one block, no constraints are

needed.

Before proving the theorem for non-independent sequences, we

will review the concept of mixing.

2.4 Review of mixing. The useful hypothesis of mixing gen-

eralizes the idea of independence. Let {zi : i > 1} be a sequence

of random variables and suppose the event A is in the sigma field

a(z1 ,. zk), while B E a(xk+n,....). Then if the absolute differ-

ence of probabilitieslPr(AB) -Pr(A)Pr(B)I is less than or equal to

a. uniformly for all such A and B, we say that the z's are mixing,

provided an - 0. The an are referred to as mixing constants.

Even to prove a central limit theorem for the z's, we would

require mixing or something which implies it. See for example

BILLINGSLEY (1968), pages 166 and 174. One may also show

(BILLINGSLEY (1979), p. 317) that if the random variable y is

measurable a(zl,..., zk) while z is measurable r(zxk+n,...), and

if y and z have bounded fourth moments, then IEyz - EyEz <_

128(1 + Ey4 + Ez")an/

2.6 Theorem. Let (zx i > 1) be a sequence such that (1)

for some positive integers j and k, the set of moments Ex, .. x.
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is bounded for 1 < 4(jk - 1) and (2) the sequence is mixing with

mixing constants a. = O(n - 2(3 -1+,)) for some e > 0. Then the

jth cumulant of alS +... + akSn l - k, where S = zi, is 0(n)

as n - oo.

Remark. In applying the lemma of BILLINGSLEY cited in the last

subsection, the random variables y and z will be products of at

most kj - I z's, say y = x, = x,,, .-. x,, 1, and similarly z = z,.

Then the lemma together with the hypotheses of our theorem guar-

antee IEz,x - EzxEzI is uniformly O(g-(-i+lE)) whenever the

minimum pi exceeds the maximum vi by at least g.

Proof. As in Theorem 2.3 we only need to show that each cum(y,,)

is 0(n), and this reduces to considering the same sort of sum of

cumulants. The only difference is that terms like

may never be zero, but with a strong enough mixing condition the

sum of such terms will still be 0(n), as we shall see.

To be specific, suppose again that we are dealing with

n- 4  X cum( i, 2 zi 8 3 ,J Zi ,i, 51,i 7Zi7)

17 which we want to be 0(n). We have t = 4 arguments of the cu-

mulant, d = 8 dimensions to the space of indexes, c = t - 1 = 3

necessary constraints for a nonzero cumulant in the independent

case, and p = 4 total powers of n in the denominator, which have

been factored out of the sum. The relation d - c - p = 1 always

holds, and this guarantees that the sum is 0(n) in Theorem 2.3.

.o.. .
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Suppose that it < "" !5s = i. It is enough to show that the

sum over such terms is 0(n), as long as we can do the same for each

ordering of the i's. We will need to consider the cth smallest gap

i - ik-i in the index i - (i1 ,... ,id), which we call g. If the gap g

is "large", then x's whose indexes differ by g or more will be nearly

independent. If such z's actually were independent, and if the cth

smallest gap in (i,...,id) is g, then the corresponding cumulant

would be zero. In our specific example (c = 3), this means that

only two pairs of x's or one triple could be dependent, which in turn

implies that one of the cumulant's arguments would be independent

of the rest, exactly as in the proof of Theorem 2.3. With our mixing

condition, the cumulant will be nearly zero. Therefore, we must

answer two questions:

(1) If the cth smallest gap in (it, -. ,id) is g, then how small is the

corresponding cumulant, and

(2) How many points (ij ,..., id) have cth smallest gap equal to g?

To answer the first question, we expand the cumulant in terms

of moments, as in (2.2.1). If we factor each expected product in the

moment expansion as though the x's whose indexes differ by g or

more were independent, we arrive at an expression which is identi-

cally zero (because g is the cth smallest gap). But now each time we

factor such an expected product we incur an error which is uniformly

0(g-(j-+))-see the remark preceding the proof of this theorem.

Note that each term in the cumulant expansion is the product of at

most d moments, and each moment is the expected product of at

•'V.A
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most d z's. If b > I is our uniform bound on z-moments of order

d or less, then each term of the cumulant expansion is bounded by

bd in absolute value. There are exactly d z's in each term of the

expansion (each index occurs once), and each time we factor we in-

duce an error bounded by O(g-(i-1+)). The total absolute error

induced by factoring expected products is therefore O(g-(j-i1 +)).

This answers the first question: cumulants whose cth smallest gap is

g are uniformly O(g- (i - +)) in absolute value (before multiplying

by the factor n-P = n-4 in our example).

Next we must bound the number of (ij,. .., id) with cth smallest

gap equal to g. Recall that i1 < . iS = id, and let g, =

l,.. ,9d = - id-I. The cth smallest gap is the cth smallest of

g,..., gd. Again, it suffices to find a bound based on the assumption

that g2,.. .,g+I are less than or equal to gc+2,.. ,gd. There are

gC ways of assigning values in {1,...,g} to the c smallest g's and

(g - I)' ways of assigning the values {,... , g - 1}. Therefore there

are O(g1- 1 ) ways to assign (1,...,g} such that the cth smallest

gi is exactly equal to g. Some of these ways may not satisfy the

constraint E gi = n, but that does not affect our upper bound.

There are fewer than nd- C ways to assign the remaining gi's, hence

the number of (i, . . ,ij) with cth smallest gap of g is O(gc- n d - c).

This answers the second question stated on above.

We know already that the number of cumulants in the sum with

g = 0 is exactly n -d . Therefore the entire cumulant sum, after di-

viding by the denominator nP = nd-c- I is bounded in absolute value
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by a constant times n-(d-)(nd - + ndc - gC/gi - +E) =

0(n) if j - 1 + f > c. For ith order cumlulants, the number of

constraints c is j 1, so the cumulant SUM is 0(n).

2.6 Remark. Note in particular that the jth cumulant of S,

cum(S,...,S) , is 0(n), where S = E'xi, provided the mixed z-

moments of order 4(j- 1) are unitfrmly bounded (we assume j > 1).

We also have cum(S,.. .,S, zn) = 0(1), since the only con-

tributing terms are those for which the indexes ii,... ,i are all

approximately equal to n. In general,

cum(S, .. I S, I'I==I zn_.) = 0(1).

Here the il are fixed nonnegative integers, not necessarily distinct.

For this to hold (assuming S repeats j times) it suffices that the

mixed z-moments of order 4(j + m - 1) be uniformly bounded and

the mixing constants am be of order 0(m 2 (i+e)).

In this connection we have the following corollary.

2.7 Corollary. Let S = E xi. Then for positive integer k the

moment ESkxn+, X .. , is of order nP, where p is at most [k/2],

provided

(1) EjzI = 0(n-2 ).

(2) The kth cumulant of S is 0(n).

(3) cum(S,... S, X-i, -z,-) = 0(1) (S repeats k orfewer times

as an argument).

(4) z has uniformly bounded mixed I + k-order moments.
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Proof. Use induction on k + I. If k + I < 1, the conclusion follows

immediately from (1) and (4).

For k > 2 and I = 0 we observe that the kth cumulant of s

is 0(n), expand the cumulant in terms of moments, and apply the

induction hypothesis. The first term in the cumulant expansion

is ESk, while the other terms are products lj ES"' with E "i =

k-so the induction hypothesis proves this case. For general k +

I > 2, consider cum(S,. . . ,, -i,) , which is 0(1) by

hypothesis. El

2.8 Remark. In a sense these results may not seem as good

as one might hope, and they can in fact be strengthened. Sup-

pose we are interested in the second cumulant of S/n + S2/n 2 .

Then we have shown that cum(S/n, S/n) , cum(S/n, S 2 /n2 ) , and

cum(S2/n2,S 2 /n2) are all 0(1/n). This means that the least sig-

nificant term in the Taylor expansion has as much impact as the

most significant term. We can sharpen the result if the sequence

{xi : i > 1} has asymptotic mean zero, which will normally be true

in the cases of interest to us.

2.9 Corollary. Let {xi : i > 1} be an independent sequence of

random variables with zero mean and uniformly bounded moments

of order p = p' (the pi are positive integers), and let S = z .

Then cum(SPL,,...,SPj) is 0(np/21) and also 0(nPi+1). flp/2]
means the greatest integer in p/2.)

Proof. The 0(nP-+l) bound follows from the argument of Theorem
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2.3: there must be j - I constraints on the indexes of

cum (IM" 1 zs,...)

for a nonzero cumulant. It is also true, however, that each index i..

must be equal to at least one other index. If for example the index

i.. appears only once, then Ez,,. = 0 factors out of each term in

the expansion of the cumulant as a sum of moments. Thus for a

nonzero contribution we require [p/ 21 constraints, and the sum is

therefore O(n[p12I). E3

Either of the two bounds in the statement of the corollary may

be sharper. Our new bound shows, for independent zero mean z's,

that cum(S/n, S2/n 2) and cum(S 2 /n 2 ,S 2 /n2) are O(n-2), which

is an improvement.

The simplest asymptotically stationary case occurs when the z's

are independent with zero mean, except that Ez $ 0. In this case

for a nonzero cumulant each index of cum(fl , i,,...) must

be equal to another index or equal to one, and this still requires

[p/21 constraints. In the dependent asymptotically stationary (zero

mean) case, this means '!ach index must be near another index or

near zero.

For how many sets of indexes (i1 ,. .. ,i) is each index between

one and n and also within g units of zero or of another index? We

can bound this number by cn [p121 9P where c is independent of n

and g. Therefore the number with this minimum gap equal to g is

bounded by c'n[p/2jgp-1. Suppose ExnI = O(m - 1) and the mixing

*o,. I
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constants am are O(m-21 ). We then find that the cumulant of

the corresponding selection of z's, namely cum(I' j= lz . . ) is

O(g-1).

Combining these observations with the argument of Theorem

2.5 gives the following.

2.10 Corollary. Let p = "jI pi, where each pi is a positive

integer, and S = En xi (p > 2). Suppose that

(1) mixed moments of z's of order 4(p - 1) are uniformly bounded.

(2) The z's are mixing with mixing constants

am = O(m2(P+E)) (e > 0)

(3) EImI =O(m4 P+e)).

Then cum(SPI,... ,SPI) is o(nlp/2).

Note that the argument of Theorem 2.5 implies that the cumu-

lant above is O(nP- t +1) if conditions (2) and (3) above are replaced

by the requirement that the mixing constants am = (m-2(1-1+e)).

We need to make two important remarks.

2.11 Remark. Suppose some or all of the arguments to the

cumulant are multiplied by a product of z_'s. In other words,

each argument is SPj nf'l Xn-i,.,, where we allow the product to

be empty or pi = 0 (but not both). If

(1) The sum F, p. is denoted by p,

(2) the total number of indexes is d = p + ,

(3) the number of arguments for which ml = 0 is j,
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(4) at least one mi > 0,

(5) the z-sequence has bounded mixed moments of order 4(d - 1),

and

(6) the mixing constants am = O(m - 2(i+e)) (C > 0)

then the cumulant is O(nP-i).

This is an extension of Theorem 2.5. The corollary above can

be similarly generalized, but we shall not do so.

2.12 Remark. Given a finite number I of asymptotically sta-

tionary sequences, zx(),.. . ,z , we may take S(i) = " z and

obtain all the analogous results for mixed cumulants provided the

vector process ( (')): i > 0) satisfies the mixing and mo-

ment conditions.

We will come across some estimates of the form

Here we are simplifying slightly, because the sums S/n and the

factors z,,/n could be from different sequences, and furthermore we

might actually have products of factors of the form z,i , with

a different j for each factor. A primary example is the estimate of
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covariance. We have

n-I

n

n1

(n (Z1 A ('

n

S - )2 +

+ [(zj-, ) + (Z,, - 4)].
n

There are two sequences involved here: (x -,) and (z -it)(zi+I -

A). Each term does have the form suggested above, except that

there may be an extra factor of n-P. We want to conclude that the

cumulants of such expressions have the same asymptotic behavior

as do the Taylor expansions dealt with in Theorem 2.5.

Theorem 2.5, after rescaling, shows that F1=m (S/n)m has

cumulants ic. of order O(n'-i). This jth cumulant is a linear com-

bination of terms

cum(SPI, ... , SPi).

Subject to appropriat ! mixing and moment conditions, Remark 2. 11

shows that if an (zx/n)q argument is adjoined, then the order of the

cumulant is actually reduced. Alternatively, if a term S'i is multi-

plied by (z,/n)9 for integer q > 0, then the order of the cumulant is

[, .'-.', " "- - - , , - -. . , , , ,-,. . .. , .. . .. . ,, , .. . ,• . . . • . - .. ,. . .
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unchanged if q = 1, and otherwise reduced. Therefore we have the

following theorem.

2.13 Theorem. Let f, = o(S/n)(x/n) where the

qm are nonnegative integers and S =j";i. Let p = j. [maxmn (m+

qm)] > 1. Assume

(1) the z's have uniformly bounded mixed moments of order 4(p -

1), and

(2) the z's are mixing with mixing constants am = O(m2(3+e)).

Then the jth cumulant of f is O(nl - j ) as n -* oo.

2.14 Remark. Suppose a finite number of sequences z(1),... ,Z( r)

satisfy the vector versions of (1) and (2) in the last theorem. Here

(1) means that the moments of form Ez(mL) z ) are uniformly

bounded for I < 4(p - 1), and (2) becomes the obvious extension of

the mixing concept. We may then replace any factors (S/n) by any

n-1 I Zi X(m) and any zn/n by x(z_/n for fixed it or by z')/n for

fixed i. Also, dividing some terms by additional factors of n certainly

will not increase the order.

Let us illustrate how the estimate Al of equation (2.12.1) fits

this form. Let z(1) be the sequence (zi -p) and Z(2) be the sequence

(zj - i)(zi+I - s). Then the standard estimate of (2.12.1) is

S ( ) (2)' IM) + S O (l) 11) ( )'

n n n n + n n n +n

We can therefore conclude that the jth cumulant of R1 is

% %
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O(n -). The maximum number of z factors in any term of Al

is two, so it will suffice to have bounded mixed z moments of order

4(2j - 1) and mixing constants am = O(m-2j+e)).

Moment identities

2.15 Conditions. The identities in this section require several

types of conditions on the sequence {z : i > 1}. The parameters p

and I below are specified in each subsection.

(1) Mixing. The z's should have mixing constants a, = O(n-2p).

(2) Moment condition. Mixed z-moments Elzi . . zi are uni-

formly bounded for all integer j less than or equal to the order

of the moment being considered.

(3) Asymptotic stationarity. If E denotes expectation and E, de-

notes expectation with respect to the limiting stationary distri-

bution (assumed to exist), then IE. zi, - • z, -Ez 1 ... zj =

O(n-P) whenever the smallest index ij is at least n and the

number of indexes (m) is no more than 1.

(4) The asymptotic mean is zero.

2.16 Notation. We will be expressing quantities like E(" zi)P

as polynomials in n, and we need to establish a notation for the

coefficients. "A" in the notation below is meant to indicate that the

asymptotic means have been subtracted off, so in effect the z's are

assumed to have asymptotic mean zero. If S. denotes E, zi, we
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will write, for example,

E (X z1) =1 0 (AS)n° + O(f(n))

E ( Xi) =Al (AS 2 )n' + + 0(f(n))

E ( ), =' p(AS='2 S,)n' + Ao (AS 2 S,)no

+ 0(f(n))

E(RJ - -3= [,-(,R)n- +

+ ,- 4(,R4')-4 + 0(f1(n))]

and so on. The 0(f(n)) above is a generic error term which will be

specified in what follows.

Thus the superscript of ;s corresponds to the power of n, and

the argument of uP(.) is the quantity whose moments are being

considered. The notation, then, decomposes the expectation into

its components.

We will write ;s to refer to expectations with respect to the

limiting stationary distribution. In addition, if A is a vector of

estimates and a is a vector, pP(ARTa) is Z;P(ARiai), and a

similar notation applies to matrix estimates M.

If the context is clear, we may drop the argument: puP. The hat-

ted notation AP(.) refers to the estimate of the un-hatted quantity.

....................
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We may also need to consider

and

E (z)P(l+ 1 )q.

Fortunately, in such contexts the underlying sequence xi will be

evident, and we will use the same notation as before but with argu-
ments (ASPAS ') and (JSzAz +1 ), respectively.

2.17 First moments. Evidently,

p°(zSX) =0

(1)I0(ASX) = Exi,

with error term of order O(n-lP-l)), provided p > 1 in the condi-

tions of Subsection 2.15.

2.18 Second moments. Given that Sn = Fn, xi, and R, is the

correlation of the z sequence at lag i, in the stationary case we get

E(s 2 (=ES2+ - ES1)
k=O"

n-I

E Ex+2E~jzizk+l)
k=0iI

.z22:27**!*
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.~~~R + R, -.2 E... . .

k=0 I k+I-

provided &, is O(n-P) for p > 2, in which case the remainder term

(the last term above) is 0(n-(p-2)).

The asymptotically stationary case is similar, but there is an

additional term

),tn

E E Ezi zk - E. zi,.
k=1 =

The subscripted E, denotes expectation with respect to the asymp-

totically stationary distribution.

From this,

;&(.S'(=p Sn) =Ro+ 2 R-

tI

00 c

p(ASn) ;'(ASO) + E EZEzjxk - E~iXzk.
k= io=1

To estimate the error term in the above, we need to bound the

tail of the double sequence, which is

00 00 n n

Ezi - Exzj - Exz - Esxzj

,: 11 1, = -
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This is bounded by

00

2 E IEzz,+ - E.x,,,i + IEz,+3 , - E.z,+,izi,
i=[n/21 j=I

which is O(n- (p- 2 )) for p > 2 and I > 8 in the conditions of Sub-

section 2.15. (We use the notation 1:] for the greatest integer less

than or equal to z, and we also use the notation [z] for the smallest

integer greater than or equal to z).

2.19 Third moments. Here we will indicate the general method

and the results, but omit computational details. Write

ni-1

ESn3 = 3 =o - ES

n-I k
E 3I2 2

= jE xz+1 + 3Ezx+ I zi + 3Ezk+I ( c)
k=o

We now rewrite non-stationary items in terms of stationary ones,

plus an error term. Thus

n-I n-I

Z341 = [E~Z3 1 + (E43+ 1 - X+)
0 0

Other terms in (1) may be reduced by splitting sums:

k [k/21 k

I I Ik/21+l

- 9 'Q~.****'
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Applying these techniques leads to

JA I (S,( ) E.zozzj+3A°(ASf.),4(bSI').
ij=-00

The conditions are that p > 2, and I > 8 in the conditions of Sub-

section 2.15. We will not need A0 (AS, 3).

2.20 Fourth moments. We now can begin to use the cumulant

bounds developed in the first part of this chapter. If z, satisfies

the hypotheses of Theorem 2.5 for fourth order cumulants, we can

expand the fourth cumulant of S = n zi in terms of moments:

0(n) = cum(S, S, S, S)

= ES 4 
- 4ES3 ES - 3E 2 5 2 + 12ES 2 ES - 6eS.

Equating the 0(n 2 ) terms of the above shows that

,2 (AS 4) = 3 (,41 (AS, )) 2 .

In view of the more general results of the first part of this chapter,

we can certainly draw a similar conclusion for quantities like A. We

will also need to know 1I (AS, 4). In the context of autoregressive

processes, we will have an easy way of estimating the coefficient in

the stationary case, but we will need the correction for the asymp-

totically stationary case. The method of derivation is the same as

that indicated in the last subsection. After some algebra we find

:(ASn4 ) -A ('(S,2)) 2 +E .' + (As +)
-,-.
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+ + 4g(AS 3 AX.+ 1 )

+ 4/4 (LAS.)/I (AS. 3 )

+ 6 (A0 Sz"~2 
-p( 

2)] ( ,4 S"2).

The last two lines above gives the correction for the asymptotically

stationary case. For the coefficients of this subsection to be valid, it

suffices that I > 12 and p > 4 in Subsection 2.15.

2.21 Fifth and sixth order moments. If zn satisfies the

hypotheses of Theorem 2.5 for fifth order cumulants, then

A 2 (AjS, ) = 10'U, (AS,3)A1 (AS, 2 ) -15 ('al(AS,)) 2p0(AS,)

3(S °) = 15(A'(A,)

It is fortunate that not only are the most significant terms of the

higher order moments reduced to coefficients of lower order mo-

ments, but also that the nonstationary correction is based only on

first and second moment nonstationary terms.

In the next subsection, we extend these formulas to the case

of mixed moments. These results will be very useful in subsequent

calculations.

2.22 Mixed moments. Given two or more sequences, {ai

i > 1}, {bi t > 1}, and so on, we may easily extend the moment

identities of the preceding paragraphs by identifying the coefficients

of

E s a + t b),,

• ' .. . . "...-..'.- .. . - .' ..'. .... -. -'-'- .-. - ...-..- : -. - .. "....--.......-" - ." - . .- . - ." . .. ".
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provided sai + tbi satisfies the sufficient conditions of Subsection

2.15. This gives us the formulas enumerated below, where S.

a , and similarly for Sb and S,.

In many cases, a "j4" may be replaced by a "u.." Those formulas

derived using Theorem 2.5 (which means the fourth order and higher

ones) will apply to non-sample means like 14.

(1) IpI(ASaASb) =E, aobo + (Eaobi + Eaibo)

00

(2) A0 (AS.S) -'- - k(Eaob + Eakbo)
1

+ Z (Eaibj - Eaibj)

(3) l( '-Sa%2,-Sb) - E Eoa o aibj

ij=-00

+ 2p0(ASa)1'((ASASb)

S+ A! (AS.2),°(A sb)

(4) 2 (AS2ASbAS') =A(AS2)pl(ASbAS)

+ 2.(ASa Sb IA(AS.AS,)

(5b)'2(AS 4 sA = 4M'(ASa 3)1'(ASa Sb)

+ 6M' (Asa2,As),4 (sa2)

..- 3a (,A, (As.2))2 Io(Asb)

- 2p1 (A S 2). (ASASb)Ao(ASa)

. ,

'N* :to- - - -
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(6) p(As4bss) = 3 (;& (AS,))2 14, (ASbASo)

+ 12p (AS, 2 ) l (AS. ASb)P1 l (AS. ASO).

p-
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Summing difference
recursions

In our moment calculations we will have to compute sums like

c0 00 00

D iv, Eiyi or Ew,,+y

where the y's satisfy a difference equation and the w's satisfy a

difference equation in each index.

Sequences indexed by non-negative integers

3.1 One dimensional recusions. We assume that the sequence

{yj : i > O} satisfies a strictly stable order k difference equation,

yn + ay.-I + g1akyn- = 0

for n > k, where yo,...,y k- are known. That the recursion is

strictly stable means that all the roots of the characteristic polyno-

mial zk + a1zz- + ... + akzO lie in the interior of the unit circle.

Under this assumption, the sums in question converge absolutely.

36
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(See PRIESTLEY (1981) for further discussion and results). We

may calculate these sums directly, or by using the generating func-

tion e,(z) = E-' yjzj. Then V(1) = F, yi and p'(1) = F,' jyi.

Because the yi's satisfy the homogeneous difference equation,

we find

9(z)(I + + aGz') = Yo + z(yi + ayo)+
!-: "'"+ Z 't-l(yk -I + ...- + a - lyO)

and
00

0

()yo( + +ak-1) +"- +yk-,(1)
(1 +...+Gk)

It is possible to calculate jyi by considering €o(1), but practically

speaking there is an easier method. We have

00 00

E jyj l.

00 00

=-- zyj.

Note that the sums S i = y obey the same difference recursion

as the ye's, but with different initial values. Therefore a convenient

method to compute this sum is as follows.

3.2 Algorithm. To compute 00 jy:
(1) Compute So = "o from (1) above.

I-

S.- .E:...-, '.',......... ,-,-,? :"' .: , ....... ', .".'.'.' ... . -', ...... .- ' ..... - ' ."-". .: '"

':.U ,. ! "~2,.X.:,.,i 'kLi2 .i .t~. ,'. . .. •... ,,,. a , . . .. . .. . . . . . ' . - ' ". .'. . . '" . , ," '
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(2) Compute S= So -yo,..., S =Sk-1 -yk.

(3) The answer is then

S (I + + ak-1) +... + Sk(1)
(+-..+ak)

3.3 Two dimensional recursions. We will also need to sum

two dimensional arrays whose elements satisfy a difference equation.

Specifically, if Rj is the non-stationary expectation E(zj-p)(zi-pU)

and Rj is the stationary expectation E.(zi - p)(zo - 1), we will

need to sum the array Rj. - Rli_.j in its entirety and also along its

diagonals.

In an autoregressive model of order k in which the sequence

{ z-p i > 1) satisfies the usual difference equation and yi =zi-,

we get

~Rij = Eytyj

= -Ey(alyj- + + akyi-k + ey)

-- (aiA.. +' + GkR,,i-k + Eye,)

assuming j > k. This gives Ri. as the solution of a non-homogeneous

difference equation. But yi is a linear combination of the first k yi's

and of ck+ 1,..., ei, and therefore Eyi~e is some multiple of Eel. In

particular, Eyije will be the same whether we regard y, y...,k as

fixed or as coming from the stationary distribution. This means that

Rj_jj is a particular solution of the non-homogeneous difference
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equation, and so Rii - Rji-j satisfies the homogenous difference

equation

Rii - Rli- i =6i,i

- (a, 6i,- + + ak60,ijk).

The problems of summing the entire array and of suming a diagonal

require different approaches.

Summing the entire array is very simple. Just use formula

(3.1.1) to sum rows zero through k - 1 of the array. Next, input

these sums as initial values in (3.1.1) once more to obtain the sum

of the entire array. In our applications, the double sequences of

interest will satisfy the same difference equation in both indexes,

but the above procedure works in general.

Next assume we want to compute 'oI wii+j, where the dou-

ble sequence w satisfies the same order k difference equation in both

indexes (i, j >_ 0). The difficulty is that the one dimensional se-

quence wi,i+" (for fixed j) does not satisfy an order k difference

equation. We will see, however, that an order k vector difference

equation is satisfied.

Let v. = [ ,.,yaa+k-lIT (the superscript T indicates

transpose), and let F be a k x k matrix defined by the requirement

that F[ya.-k,.. -] T  [Ya.-k+,..., y,]. Note that to calculate

Fv for any vector v we simply shift the components up, calculate

the bottom component from the difference equation, and discard

the original top component. In other words, we need not store the

.....................
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entire matrix F in the computer, and furthermore multiplication by

F is much easier than usual matrix multiplication.

Now, from the difference equation and the definition of F we

know

(1) t+FvGl a+ + + F k.kak = 0.

This is the required vector difference equation. From this we deduce

00

V t=.(I+ aF+ + akF)
0=O

x [vo +(vi + Fvoal) + +(vk-l+ F vok0

Let A(z) = akzk 6 . + aoz 0 . It is easy to show that the eigenvalues

of F are rl,.... rk with eigenvectors 1, rk-1]T, where the ri are

the roots of A(z- 1 ) = 0, which are all less than one in absolute value.

(If the roots are not distinct we can draw the same conclusions using

a limiting argument). Therefore

k

I + jF+a + lFk IV- rfO

where each factor is invertible since the matrix norm tiriFI2 is less

than one. In other words, the inverse in the expression for Z: V,

exists.

....

Int app)liation of. th above ftorsueasy we shwil that generaley klow

of . r l... ,rk wiLth bib efigne ts [~,... Y,k-i IT, whre th 0,.. kre
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1. These b's will be known and because Va Fab we may rewrite

(Ias

00

0=O

The matrix polynomials may be efficiently computed in nested form

("Horner's rule"), which has the added advantage that we only mul-

tiply by F, which is easy.

For convenience we will refer to the function which takes as

I:input yol ... q yk- I and produces Z' y, as output as

SUM0 I(Yo,. - -,. -0

and that which produces F, y as SUMI (yo,..., yk...). The first

subscript (0 or 1) gives the starting index for the summation, and

the second indicates the univariate case. Similarly,

00

0

and
00

SUM 2(bo,...,k) Va.

Difference recursions indexed by (...1_ 10,1,..
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3.4 An example. We want to extend our arsenal of summa-

tion methods. The technique we are about to develop will greatly

simplify certain calculations. It is best illustrated with a simple

example for which it is not really necessary.

Suppose that a sequence {y: i _ O} satisfies the usual stable

autoregressive difference equation of order k and is moreover sta-

tionary (that is, yo,... , yk-I are chosen according to the limiting

distribution). We want to calculate o cum(yog), which is

the same as - Rj, where R, is the covariance of the process at

lag i. The covariances R, do obey a difference equation, and the

straightforward method to compute the sum is to partition it into

two sums, F"' + ' The latter sum is the same as

Though easy to do in this case, splitting the sum would be much

more difficult if we were dealing with

"-"cum(yoyi, yii).
id=-00

For one thing, we would need to estimate k' fourth order cumulants,

where k is the order of the autoregression. This is analagous to the

need to know Ao,. .. , , in order to compute ,00 A. Further-

more, although the sum involves only two indexes, some

of the component sums will involve three indexes after shifting. For

example, the sum over (i > O,j < 0), after adding j to each index

to shift the indexes to non-negative values involves three indexes.

This means we would in effect have to compute three dimensional

............................-.. ".-..-. . . .
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sums of the form

:-0

Ewi,1+i,i+i

where w obeys a difference equation in each index. This all can be

done, but it is not the best way.

Let us write a formal z-transform:

00

(1) p(zi,z2 ) = cum(y,y)zlz2,.
3,L=- cc

We say "formal" because this sum does not converge for any (zj, z2).

Ignoring all such convergence problems for the moment, we could

recover cum(yi, y,) from the double contour integral (21 and z2 each

take values on the unit circle):

If A(z) = akzk + . + aoz0 , we can "solve" for 9 by multiplying

both sides of (1) by A(zi)A(z 2), where the a's are the coefficients

of the difference equation:

aoy, +.. + aky 3...k =j

which we assume to hold for all integer j, positive and negative.

Equation (1) becomes

00

A(zi)A(z 2),p(zj,z 2) = M(C cumZe 1 7Z24.
"3j=-co

[* . . . - . * - . . . - . * . . .
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Because of the assumed independence of the e's, this is

00 a_2 _ 1ZT

Substituting back into the inversion integral for cum(yi, yl) converts

the double contour integral into the sum of the products of two

countour integrals, namely

ore f1 z, + )(1) f z2 + dz)

M=O,21 A(zl)z+,d 216 ,A(z2)z,+ d2

These contour integrals are equal to wj-m and wl-m respectively,

where wt is 0 for negative indexes and satisfies the difference equa-

tion with coefficients ao,.., ag subject to initial conditions wo -

1,(w, +a 1 wo) = = (wk-I +''"+a,-.w0 ) 0 (as follows by

writing the z-transform of this w). This suggests

00

-=00

This conclusion is in fact valid, as we will show later. Then

"0c Z 2
cum(yoyi) =,m=-o mW l.

1= 00 1r= o

Note that the sum with respect to m is a two dimensional re-

cursion, but the sum with respect to I is one dimensional, and is the

same for all m. Summing first over I and then over m gives

00 cum(yo,yW)= ( )2

1=-000

a . . . . . . - . . . \ . . .
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Even the sum wi is easy to compute. It is 1/A(1), and so

00 or2

FZ cum(yo, yI) =

1=-0

When this general method is applied to higher order quantities,

the only new parameters to be estimated will be third and fourth

moments of c, as opposed to cur(yo,y,,yy,y) for all i, j, and I

between 0 and k- 1. Furthermore, we will only have to sum at most

two dimensional recursions.

3.5 Validity of the method. Let {Y"j: (i,j) E Z2} be a double

sequence on Z2 which satisfies a difference equation in each index.

The difference equation is not assumed to be homogeneous. In the

example of the previous subsection, cum(yi, yj) was such a Yij. Let

B, be the linear operator which shifts the first index, and let B2 be

that which shifts the second: B, shifts Yj into position (i + 1,j).

If 6'' is the double sequence which is identically zero except that

entry (i,j) is one, then B6'' =i  .

Multiplying the formal z-transform of the double sequence of

cumulants {cum(yj,y)} by the product A(z 1 )A(z 2 ) to get the for-

mal z-transform of cumulants {ej,.} 1 {cum(ei, ej)} corresponds to

the following linear operation:

AY = A(B )A(B 2 )Y =

The linear operator A(B1 ) is by definition of the polynomial A equal

to I + a, B, + + akB . In the example of the last subsection,
-.

* .. .,**D~**~*.*-* . .*.*
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00M=-00 a' 6 m,. We need toshow, in smseethat the

bounded linear functional A is invertible with a continuous inverse.

Because A(BJ)A(Brj) can be factored into terms (I - riBj) and

(I - rB 2 ) with Iril < 1, it will suffice to assume A = I - rB, where

Irl < 1 and B is either B, or B 2 .

Define the measure v{11} (1 + 12)-l for I E Z, and p(l, m)=

v {I Iv {m). Consider LP (A) on Z2 , for p E (1, oo). The map A is a

bounded linear functional on LP(j;t), and furthermore it is one to one.

To see this, observe that AY = 0 and Y $ 0 together imply that Y,,1

grows exponentially fast as j -.- # -00, so Y f LP(~I). (This might

not be the case had we chosen j.& to decay exponentially instead of

polynomially).

Next we want to find the inverse A-' = (I-rB)-1. The obvious

candidate is

A-' I+ rB + r 2 B 2 +

We can bound the operator norm JIB k11 ( sup JJBzlI/I~zII) by 3k2,

so in fact the series defining A-1I is Cauchy and the candidate inverse

is well defined and a bounded linear functional (hence continuous).

Furthermore,

AV1 AY = lim (I +rB + .+ JB')(I -rB)Y

-

= lim (Y - Y'+1 B1 'Y)

[1'°,

=Y.

In our applications, A will be the composite of two or more maps

I.

I-.

[: ~ose th o serve tad AY wil hav an imple.form.gether ampl e i

6 - =lrB....... . . .
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in the last subsection AY = e - _ -m'm The inverse of 50,0

is w = {wiwi}, where wi is zero for negative indexes, wo = 1,

and (w, + awo) = = I +.- + ak-lWo) = 0. By linearity,

A-15' 0 has (j,l) element wj-wt- .In our example, ' 6mm 2

converges to e in LP(p), so continuity of A-1 guarantees that Yj" =

£M=- 0 W0-. WJ -.m " (Being the LP(p) limit in this case implies

being the pointwise limit). Because the same holds for any order

of summation of F,0_ nmmo.?", the pointwise convergence is abso-

lute. In general, when Y is bounded AY = 6 will be bounded, so

"Ea, will converge to e in LP(p). We have proved the follow-

ing, which clearly extends to any number of indexes.

3.6 Theorem. Let zk+. .. +akz 0 have all its roots in the interior

of the unit circle, and let A(B) denote the operator (I+... +ak B).

Let Y be a bounded sequence on Z2 , and e = A(B 1 )A(B 2 )Y, where

B, and B2 are shift operators on the first and second indexes as in

the previous discussion. Then

00

where w is as in the previous paragraph. The convergence is abso-

lute.

- h----



Derivation of
corrections

Introduction

We will be using Cornish-Fisher expansions as discussed in the

Introduction to derive more accurate confidence intervals for the

autoregressive process z =xi i > 1} which satisfies our usual

stable difference equation

S(xi - A) +.. + ak(Xi-k -- ) = .

We assume the difference equation is strictly stable, which means

that the roots of the characteristic polynomial zk + ... + akz ° all

lie in the interior of the unit circle. In our derivation, we take

as given the validity of the Cornish-Fisher expansion and of the

methods developed in the preceding chapters. Refer to the articles

by TANIGUCHI (1984), ABRAMOVITCH AND SINGH (1985), and

GOTZE AND HIPp (1983) for a further discussion of sufficient condi-

tions for the validity of Cornish-Fisher and Edgeworth Expansions.

48

.................... .. . .
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We will assume that the errors ei are independent and identically

distributed, have a Lebesgue density component which is positive

on an interval, and have finite moments of all orders. (Recall that a

general distribution may be expressed as the sum of a distribution

absolutely continuous with respect to Lebesgue measure, a discrete

distribution, and a singular distribution. The first of these is the

Lebesgue density component).

First we will form a zero order pivot, which is the usual pivot

t,, given by

t.= v(- )

Here, we are given z1 , ... ,n; fn is the sample mean, which is

an estimate of the asymptotic mean limi-.. Ezi denoted by p;

and vn is the estimate of the variance constant v for 2., v

limn... nE(l*. - ;) 2 . Our first order correction, TI, is a Cornish-

Fisher expansion based on tn:

7. T = tn + en-' /2 + At2n- 1/2.

The Cornish-Fisher expansion as given in KENDALL AND STUART

(1977) is

T, = tn - ,Ic -i X3(t - 1),
6

where xi refers to the ith cumulant of t. Our correction is the same,

except that we must estimate the cumulants. That we estimate

instead of using the true values does not matter to the level of

*% %
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accuracy required for a first order correction-see ABRAMOVITCH

AND SINGH (1985).

The next step is to form a Cornish-Fisher expansion from 7'I,

where now the ic's refer to cumulants of TI:

T2 = T - -CI (T12 I ( C - I

+I CI3 I4(3 3T I 2(4T3 -7Tj).+ic K3,,T1 - -,c.(T, - 37') + c
3 24 3

(See KENDALL AND STUART (1977) or HILL AND DAVIS (1968)

for the statement and derivation of the Cornish Fisher expansion).

T2 differs from a standard normal random variable by op(n-1). It

will be possible to obtain tn as a cubic polynomial in T2 , (which we

take to be standard normal) instead of vice versa. This will make

the formation of confidence intervals easier.

The zero order pivot

4.1 Algorithm. We begin by specifying a possible pivot t,, which

will be used in what follows. Let t, = n 1/2V;112(-,, - A), where the

estimate v, of the variance constant for Xn is obtained as follows.

1. Estimate the asymptotic mean p by A -Z, I = Zi .

2. Estimate covariances Ri for j = 0,..., k by

n-JA" = !Zz (=- )=+ -
-i )] (ij n

" =- [ (Xi- + IS -n ,)(XZ,+ .- + Z- ,)

,,

Ar
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n (x - is je - 11) + n2.( n Z 2

+ _Zr [)( +, - A) + (xi - A)]
n n+ (X,+ A) +. n- n - ] o'

"-A) [2n1-. -,)-

1 Zi (z &i)]
,, I i-j+1

I- n

i'" () =n -'(zi - 1A) (xi+j - is)

s=-j+1

_,Ui)2

+ (Z i is) ] +
nn - + 1

The last form is convenient for analysis, while in practice hi would

be calculated by a method like the fast Fourier transform.

3. Solve the Yule-Walker equations for the estimated autore-

*,i X . " .' * " * -*i.i . * % ' , . :. . • . . . . . . ,. . .. . . . . .. . .o . .. , _ . . _ . . , _ ,. , . , _ -
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gressive coefficients aT ,.. i]T

'Q." I... Rk-, I :, a,, R,
Or, denoting the above matrices by Mf, a, and -R,

4. Compute the estimate .2 of the prediction error variance

(variance of the e's of the mr A):
-2 40-2

&,,2 2 = 1.R +... +&J4

= A + aTk.

5. Estimate the variance constant v by

&2

:,-."( I + a , + ..+ a ,) 2 "

6. The pivot is t,. = nl21 tl 2 (z,, - ).

The first order pivot

4.2 Introduction. In order to make a first order correction

to the confidence interval for the stationary mean 1A = E~z, we

need to estimate Et,, and Et, where t,, is the zero order pivot.

Specifically, if Et, = n + a2n - I + O(n - 12) and Eta =

an-1/2 + 22n- I + O(n-3/2), the first order pivot T1 is given by

= tn + n -I1 +int-n -11 ,

• .%- NV- ,,- .w .'w',."-"'V " . .- "" """ """ " -- *-... .*a.' ...... ._'''.',e :.* ,""



DERIVATION OF CORRECTIONS §4.3 53

where 9 = -3a,/2 + fI/6 and p = a, /2 -,0/6. This follows from

the form of the Cornish-Fisher expansion given at the beginning of

the chapter along with the relationships between moments (pi) and

cumulants (ici):

Oct = 141,

IC3 = A3 -i2s1 + 2isA

In deriving T1 , we will ignore terms which are O,(n-'). (The

definition of "Op(n-1 )" is similar to that of "op(n- 1 )": a sequence

{z, : i > 1} is said to be Op(n- 1) if nz is bounded in probability).

4.3 First moment of t,. From a Taylor expansion,

t= n-1/2(tn- ) (--1/2 -3l2 (Vl - V)) + 0 (n- 1).

Then given our regularity conditions stated in the first paragraph of

this chapter (z = {zi : i > 1} satisfies a stable order k autoregressive

difference equation whose errors ei are independent and identically

distributed with positive Lebesgue density component on an interval

and with moments of all orders),

Etn = En-1 /2 (tn - 1/2

- _v ) -) s) + 0(n-).2

The regularity conditions imply that E(z. - j&) = n-I&-(Az) +

0(n-3/2 ), where as usual is-I (Az:) means - E(zi- p). Therefore

the first element of the n-1/2 coefficient of Et. (that is, a,) is simply
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..-p (A*)aV- 1 /2 . Our analysis is conditional on z,... ,zk, (k is the

order of the difference equation) and thus from the formulas for

summing difference recursions,

V-1/2 - I (at) = tV 1 / 2 SUMOI(z 1 -_A,...,)zk -)

= 1/t2 (= )I+.. + ak-1) +-- + (Zk - U).
V ) (1 +"" + a-)

and the natural estimate is

V;1/2 (z1 f- M)( + .- + k- ) + '. + (Z; -2n).
(I +.. +h)

The other element of a, is

IA -(A ,)= ( - i)(-1/2)- 3/2(, -V).

Expanding v. - v as a Taylor series in (&2 - a2) and '(aj - a,)

gives the first order approximation
.-- &2 _ a2

(1+ ... + ak)3

.. 20,2
"'" - ( +.. + i)3 (at --at +" + ak - ak).

The autoregressive coefficients a satisfy M, = -R, while for the

true values we have Ma = -R. Writing

(M + AM)(a + Aa) = -(R + AR)

shows that AMa + M~a + AM~a =-R or

a -a=Aa

.- = (M + AM) - ' (AR + AMa)

" _ (AR + AMa).

.... .. . -. ,. . ........ . -.......... .......
-.. ..... ... .. .•. .. •.... .* .* * * U...-°-..... ... ° .--... °-...
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We may similarly find A(M - 1) A k -1 - M-1 by writing

(M + AM)(M - 1 + A(M-1)) = I

=A(M -n = _--1AMM 1

= _M - s AMM-1

to first order. If desired, then, we have a second order approximation

for Aa:

(2) Aa = -M - 1 (AR + AMa)

+ M-'AMM - 1 (AR + AMa).

For the present, we only need the first term on the right hand side.

The remaining part of the n-1/2 coefficient of Et,, (that is, a,),

is then

-ijEn(*,, - i)sv-3/ 2 ,(v, - V)

- 32 [E(-n_ 1) (&2 _...a2)

2or2(Zn-p) 1T(a - a)1(1+...+a k)3

2 E( -n)(& 2 - a2)

- 3/2n + - )2

2 a E(Zn - 1A)1 )()M- 1(AR + AMa)

Recalling that the notation p-(A2AR) denotes the most signifi-

cant vector coefficient of E(Z, - p)AR, with similar definitions for

* a,=. dh >

-. -°. .* ,.*
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JAI(AtARo) and the matrix - 1 (A_*AM), linearity shows that

the formula above is

1 3/2 r - )(&2 , - n

2" + -+"' ,)2

+ (I +. .. +ak) 3 M ( 1 -A'(i=:R) +

Next we must express &2 - 0,2. We have

&2 =AJ + TR
= (Ro + Alo + (a + Aa)T (R + AR),

so to first order

A0- A &2 a2

- AzRo + AaTR + aTAR

A& - M-'(AR + AMa)]T R +aT AR.

Because a = -= -MTR, this is

a 2o = ARo + (ART + aT AM)a + aTAR

= ARo + 2aTAR + arAMa.

Therefore to first order

A 1 -(i A(.,2)) = A-'(AZ o)

+ 2a AT (AxAR)

+ aU_ (A2AM)a.

Combining results shows
Ii "  ~~_ v-31/A-,(AXA )=

k2
I;
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1 _3 l/ ,=_ -' (-z Ro) + 2aTIA- (Az R) + a7#- 1 (AxAM)a
2 LA(1)2

20 2 1TM-1(, - 1 (AzAR) + j-'(AxAM)a)+ A()3J

Therefore, the n-l/2 coefficient of Etn is

- 1 / 2 (XI - n)(1 + "+ 4-~1) + + (Zig - Xn) - I(3)

-AIAAO + 2~A1AA)+a1- AA~

2()

+ 2a2 1TM- 1 (11-1 (AzAR) +/j- (AxAM))+ A(1)3J

We are left to compute A-r(AzARi) for j = 0,...,k. Recall

the form of R given in point 2, equation (4.1.1), in the section on

the zero order pivot.

Let Rj = n- E" x(zj -/)(i+j - ). Then

00
oE. (xo - 1A) (Xi - JA) (Xi - JA).

i =-00

The results of Chapter 2 show that -'(AzAR') = -1 (AZAR.).

It is worth noting in passing, however, that the end effects in the

computation of RA. can be significant, though they are not in this

instance. In particular, the results of Chapter 2 also show that

p-2 (zAz 2 Rj) j4/-22

-.........
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To estimate " E(zo-p) (Zj-/)(Zi-/), we use the methods

of Chapter 3. This illustrates the utility of Theorem 3.6. We have

E,(xj -/A)(Zj -IA)(Xi -A ) =CUre(X, -A ,Zi -;&, Xi - ,U)

= cum(e, e, E)Ym-1Ym-iYm-

where the cumulants are with respect to the stationary distribution

and y has z-transform 1/A(z) = (aoz ° +... + akzk) - l. This means

that yi is zero for negative indexes and obeys the autoregressive

difference equation with yo = 1,0 = yt + a1yo = -= yk-i + +

ak- I.yo. Therefore

00

E E.(zo -j) (x - ) z, -s) =
i=-00

00 00

ic3(e)E~ E: 14O-rnYj-m
i=0 M=-00

X3(e) 0 mf
A( YMYM+'.

M=O

We already know how to compute [Z ymyr+iJk-, because this

is just SUMo2 [y.y,1. The special structure of [yayJ6] facilitates the

calculation of the sum, as reflected in the algorithmic summary at

the end of the chapter.

4.4 Third moment of t.. For the first order pivot T, we also

need to estimate 81, the n- 1/ 2 coefficient of Et3, or U-1/2(at.3).

...
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From a Taylor expansion,

3 = n312(-n _-1A) 3 (V-3/2 _ 3v-5/2 ( - V) + Op(n-').

Therefore61 = v-3/ 21- 2 (Az 3 ) -3v-/2p A2(Az3Av)/2. Now

001A2, z E= (zo -. u))(zi - IA)(zj - ;&)
s,3=-00

00 00
= ~j 13(C) Z: Y-m~i-m~fj-mn
:,j=-00 m=-oo

From the fact that M-(_Az 3) I-j;"(Az; ) + 3/- (Az)v, we find

l = /3(f)V_ 3 / 2

A(1)3

3 V-5/ 2
p-2(AX3AV)

= ,c 3 (C)v +312
A(1) + 3W-(z) - 1 2

9 -3/2

Replacing all quantities in the above equation and in equation (4.3.3)

for a, by their natural estimates enables us to compute
' 3. 1-
.. ~ = -ji + g

61 1-

2 6

,t.3T" t. + + "

%/n o
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The second order pivot

The second order pivot T2 derives from a Cornish Fisher ex-

pansion of T1. The expansion is

1 2
T2 = TI -K - IC3 (T- 1)-( - l)Tj

6 2
I I

1 11+ -, 1,c3T1 4 -c(T13 - 3T1 )3 24

6+ c(4T13 - 7T) + o,(n-1 ),

where ci is the ith cumulant of T1. It is not hard to show that ic,

and i3 are o(n-1), while #c2 and X4 are 0(n-1 ). Because t,, - T is

Op(n-1/2), we will rewrite the above as

1
T2 = T1 - - l)t

2

- 14(t, - 3t4) + op(n-).

Again, the fact that we estimate nX2 and nc 4 does not matter to

op(n-')-see ABRAMOVITCH AND SINGH (1985).

4.5 Second cumulant of Ti. We have

i 2 -1=ET?-E -1

=ET?- 1 + o(n - ')

+/p2 2=E tn++ + ] o(n-1)

92 3p2  20a,=Et2 I +-- + _ +
n n n
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+ 2p,+ 20 p
n ni

+: 2E(p. - p)t. 2Eit(ef - )
+ 2E~ n+ - + o(n-).

Estimation of most of these quantities, and of those needed for X4,

is straightforward. The necessary calculations are summarized in

the subsection at the end of the chapter, along with a few brief

explanations and references to Chapters 2 and 3. In the current

subsection, we will discuss points which require further elaboration,

and will point out some pitfalls.

In many cases we will need the most significant coefficient of

covariance between the point estimate 2n and the product of two

estimates, 04. In other words, we want the most significant part of

E(,n -A)(04-pq). To "first order" the change P4-pq is pAq+qAp,

so we expect the coefficient to be

.p/ - (AxAq) + qA-L (AxAp).

This conclusion is generally correct, but one must be a little careful

of the logic. The true change includes a ApAq term, but the ex-

pectation E(AxApAq) is of lower order than the other terms. If,

however, we were considering E(2,, - /) 2 (p - pq), we would need to

account for the extra EAx2ApAq term, because this is of the same

order as EAx2Ap and EAz 2 Aq. In short, one must carefully apply

the results of Chapter 2.

We now turn to specific items, following the same order as in

the second order summary at the end of the chapter.

b" . . .. • • . . . . . .. . . .. ..
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A-21. 2 A R). From the definition of R. and the mixed

third moment identities, this is

00

Z cum((Xo - (X- j), (XI - /)(Xm -/4)).

,,m=-00

Again we will see the usefulness of Theorem 3.6.

Let Y!,iL,m = cum((xi - A)(xi - 1), (z - A)(xm- j&)). Apply-

ing the autoregressive difference equation to each coordinate trans-

forms this sequence to the following e sequence:

jiL,m cum(,Ej', Clem)

C4 -a 4 fori=j=1=m,
a 4  fori=1#j=m,

t a 4  for i = m "= ,
0 otherwise.

Theorem 3.6 then shows

yiji,m = (E 4 - 3a4) E Yi-pYj-pYl-p!Ym-p

00

+ 1: Yi-pYj-qyl-pYm-q
p,q=-o

00

+ a4 1 Yi-pYj-qYl-qYm-p.

P'q= - cc

Recall that y is the sequence whose z-transform is I/A(I). Including

those pairs (p, q) for which p = q in the latter two sums is compen-

sated by the -3a4 in the first. Summing the above over (1, m) E Z2

now leads to the result stated in the summary.

. .
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2. A' 2 (A*AR "). The expression of the summa.y is obvious,

except for the -j&- I(A±2 AR) term. This comes from

To find the value of this, it is only necessary to equate 0(n 2 ) terms

of

0(n) = cum(Enh,, - A), Enj (zi- A'), ( ,n-,- 14), (xn-, ,"- 0)).-

3. ,-' (ARjARt) . Again use Theorem 3.6. From the moment

identities, we want to estimate

00

E cum((Xo - A)(Z- ), (Zm - A)(Zi+m - A))

m =o

under the stationary distribution. Theorem 3.6 reduces part of this

to a sum
00

Z."Y-pY'-pYm-pY-+m-p
[; rm,p -00-

This accounts for the SS1 term appearing in the summary. The

rest is

Y-p j-qYm-pY1+m-q
m,p,q-00

+ Y-pY-qYm-qYl+m-p.

m,p,q -- 00

* ... . . . . . . . . . . . . . . . .
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We will illustrate the method for the first of these two sums. First

sum over p and then over q. The result is

00

-=00

For convenience suppose I > j. Then both Eo and - -I are

equal to
00

S"2,11-il =  SMS'n+11-ji-

M=0

In general, this leads to

2s,1,-jl + SSj..--.,,
O<m<Il-il

except that if I = we need to subtract So from this (because then

Ex' and E-11-;' overlap).
.4. .4-2 (A_ Aa). Note that we consider the entire expres-

sion for Aa given in the first order correction, Formula (4.3.2).

In general,we will need to consider higher order errors to compute

-(A A(.)or '(A(.)) for any "(.)."

-5. f-(AzA(0)). The estimate of Ee3 is given by

te 3E _n-'E~

k+1

n E- Rz 2n, r) +.. + ah (X,_- Z.)l]
k+I

i -. O
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This reduces to our problem to estimating the most significant co-

efficient of

and
I.t

E(2. - p)n-- e4).

The first of these coefficients we refer to as / ;(A2 A( - j).

Because P - e3 is a polynomial, we could write the second exactly

as a Taylor series, but we only need the following approximation:

ftfi

Part of this is, to our order of aproximation,

-3A(1)0, 2 E(t A-2

The rest is

k nt

j=1 i=1

The inner sum estimates cum(e?, ,i-) , which is zero. The expec-

tation EAai (Z - 14)A (cum(c?, zi-)) is of lower order, though of

course the estimate need not be zero.

_°
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6. Calculation of M2 and A,;1 (At,AM2 ). The algorithm of

the summary uses Homer's rule or nested evaluation of the matrix

polynomial defining M2 . From the stated algorithm, it's clear that

M2 is computed as

~F (... (FakI + akII) +.. + aoI.

The calculation of i-; (A%,AM 2 ) parallels this.

The rest of the calculation of A2 (TI) is straightforward.

4.6 Fourth cumulant of T1.

. (A) From Theorem 3.6, the fourth order cumulant of

the sum F-' (zi-p) under the stationary distribution is IC4(e)/A(1) 4 .

Now equate the 0(n) terms of

14 = 14 - 3112 2

where the i and is's are moments and cumulants of Z-7(zi - p)

under the stationary distribution.

2. f-'(ARj). By this we mean the n- 1 coefficient of E(hi -

Ri). Note that in general in computing i 2(A()) we must account

for higher order terms. For example, to compute jA- (Aa) we

use the first and second order terms of Aa given in the first order

correction.

3. k4 (T,). The expression given derives from the relationship

between non-central moments and cumulants,

X4 = 14 - 41A31 - 31522 + 12i2,,2 -61,

.-- ri~
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which in the case of T, reduces to

ET4- 3- 6(, 2 (T\) 1).

Inverting the correction

We now discuss how to invert the first or second order correc-

tion. Suppose

+On +Pnt Vntn + Wn,!::, : t. + ,

and define

g(z,o,p,A,w) = - + + +-

By 0. (and so on) we mean the estimate of e based on z1 ... , z,,.

Tlen On, On, Pn, Vn, Wn) is Op (n- 1 ), as are g(, On, p, w.) and

tn- . Ignoring terms which are Op(n - 3 /2) and writing g for the

function g(, O,, P, v., w ) and j for the derivative of g with respect

to its first argument,

t,,-n + (tn - , €+ (tn -)2"+ o,,(n -3/2)
2

= g + g'. (g + (tn - )g') + Op(n - 3/2)

= g + g'g + Op(-1/2)

On, +-'ne'+ + n e

V - - n n

+ (20np n + 2p 43) + Op(n-3/2 ).
nt



-S

DERIVATION OF CORRECTIONS §4.7 68

-a. . Therefore

+ -- , + 2Gpn - wn, 3 + 2p2 3 ) + Op(n-'/2).
n

Here f is regarded as a normal random variable. This equation

enables us to convert normal quantiles (f values) into t,, quantiles

directly, rather than solving for the t,. quantiles.

Algorithmic summary

In this section, we summarize the computations necessary to

make the first and second order corrections. As usual, z is an

autoregressive process of order k. The autoregressive coefficients are

_= Ia,.. . , ak, the errors are ek,. ., en, the variance of the e's is

.2a, while v is the asymptotic variance constant for -*n. The analysis

is conditional on z1,..., zk. The first and second order corrections

depend on the method of estimating v, and we assume that the

method detailed at the beginning of the chapter is used.

4.7 First order summary.

. Compute

::. #-I (A ,t) = ~SUMoi(z,--i , . z ,)

2. Estimate ei, i = k + 1,..., n. The estimates are

- = (z - 22) + L, (Xi- 1 -:2)

. + -t).
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3. Calculate Ee 3 = n-1 k+1 13

4. Calculate 1/A(1) = (1+...+ak) 1 . This is the sum E'y,

where yi has the z-transform 1/A(z). Recall that A(z) = akzk +

+ a0zo (ao=1).

5. Calculate "0 yiy__ i+j, (j = 0,... , k - 1) as follows. First

solve the triangular system

ak- I ... ao yk-1 0

Recall that F is a shift matrix defined by the requirement that

F =
Yk1 Yk.

The matrix F, then, involves the estimated autoregressive coeffi-
cients. The desired sums are the solution of

(I +"" + akF ) "="

FYaYa+k:-1. y-1.

6. Compute Z[y yy,+. from the sums of the previous paragraph

using the fact that the sums E',0 Yaya+i as a function of i obey

the same order k difference equation.

7. Compute the covariances between the point estimate :, and

estimated covariances R-:

-A(1)ZaSaj
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for j = 0,..., k.

8. Let l,;' (A,tAM) denote the symmetric k x k Toeplitz

matrix with (i,j) entry equal to ji;'(A ,AR1 _.I). Similarly

let ;%(A ,,R) be the column vector with ith entry equal to

-T (A-,) for i between 1 and k.

9. Compute the estimated coefficient of covariance between the

point estimate t,, and the vector of estimated autoregressive coeffi-

cients a:

p.'~1 ( xZ,a) = -A-' (fL;'( .zxR) + p-1 IAAM)a),

and also

A-l(A (Ta)) -1TA;*(A-tnAa).

10. Calculate the estimated coefficient of covariance between

the point estimate and prediction error variance estimate:

A, -*n(A %AR) + Ti1(~ Aa)

+ TA-'(A-nAR).

11. Calculate the estimated coefficient of covariance between

the point estimate and ,

.: ( +...+ ak)2 l+. + ak)3

12. The estimate of a,, that is, the n-1/ 2 coefficient of Etn, is

given by

-/2 . . . . . . ./',... , = (Ae,,); - n,-(e, );3'

+.2oa
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13. The most significant coefficient of the third central moment

of the point estimate, under the stationary distribution is then:

14. The estimated n-1/2 coefficient of Et is then

A;2(A_3)V-~3I2 + j At'jV;1/2

9 ,Ap;, (A*,,AV)V; "3/ 2.

15. One may now compute the coefficients for the Cornish-

Fisher polynomial:

"3. 1*
3 a= + 1 '2 6

16. The first order corrected pivot is then

T = tt + On-i/2 + At - l/ ,

and one may compute the p-quantile of the distribution of t,, by

-- 1/2 _A2-/. ,Z - gn-l z; n-

where zp is the p-quantile of the standard normal distribution.

4.8 Second order u'umnary. The bulk of this calculation

consists of the calculation of the second cumulant of T1. Though it

may appear lengthy, the calculation is not too computer-intensive.
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Calculate A-2 (Az 2) using the moment identities:

1.0

2. =2(2) -2.SUM 1 (,..., A.

Estimate the difference between the above and its non-stationary

equivalent. From Chapter 2, this amounts to summing the double

array 6 below over the entire first quadrant.

3. ,i = (z - -)(zi 2n) - RIj-il,

for 1 < i,j < k.

4. TEMPi =SUMoL(6,,l,..., ,k),

fori= 1,...,k.

i 5 (At2) - -(A22

SUMo 1 (TEMPI,..., TEMP).

A. -I(A't2) = T2(A_*2) + (A-2(AZ2) - 2(AZ2)).
6. n n n-

In the next sequence of equations we will compute .- 2 (Az2AR.).

Recall that R. is n-  (z, - ;)(z+ - L).

n

7. '&4 i4

k+I

':8. n; Rj'A A() YW,+j

,. + A(1)4

.. . . . ...-- -..---- ,---
a , -•
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Refer to the first order correction for yy.+j, which has already

been computed.

9. ,- (AR;) = SUMo, [(zi - 2.),- 2,)-R,-,]j,

where the value for j - k is obtained from the values for j =

0,... ,k - 1, using the fact that as a function of j, these quantities

obey the autoregressive difference equation. Next, for j = 0,... Ik,

compute

10. A 2(A,,,R,)=-3(A,:(,_*,)),

8 n+

11. A-2(-j.,AR,) A (At.AR,)

+ 2A-' (A-,),. (A,.AR;.)
+ A

In the following formulas, Si will stand for E.>o Vya+i, which

has been computed in the first order correction. Let S2,11il stand

for the sum F'.>o S 0S j+g..-- Compute:

12. 5-,11-ij = SUMo 2(SaSP)l1-j,

and iterate the above out to S2,2k using the autoregressive differ-

ence equation (which S2,, obeys as a function of i). Next estimate

13. TEMP=(74- 30') SiS,

- . .



L

[..

DERIVATION OF CORRECTIONS §4.8 74
+ 4 [2S2 ,1t-j + 2S2,1+i

+ [2S2,~11 j

o<i<l1-jl

+ ~I sis+ji s]
0<i<1+"

The estimate of ;-1 (ARIAR,) is then

'2,&4 , ifl=j$Oi-., ~~~TEMP - So 4  fl 1
14. iA;1 (AR.AR,')= TEMP - 2S &4 , if l=j=O

TEMP, otherwise.

In order to estimate 1- 2 (A22a), first compute the following:

16. 8;( R; &) =

+2;"' 2AR). z,R,)

Let MU') be a k x k matrix whose (i, 1) entry is one if ji - 11 j

and zero otherwise; for i < j _< k let R(') be a column vector with

elements 1,..., k which ire zero except for the jth element which is

one; and let R(O) = 0. Compute:
17. W t =f I~r- (R(j) + MU)a),

18. w . -I

k

19. jA; (AA1?) _ w'=A;,(AR, ),
"-" $'=0
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for I =0,...,k.

20. t2 A a

0< s,j<k

- (A- 2( AR + A-2 (,I_*zM)a),

21. i4 2 (zA2a.4PiAA) =jl(2i. za~ 1

+ 2A

22 j- 2(At 2 A(0,2)) A-2 (A22nP&) + aT,- 2 (zA_ iR

+RTA-2 (At 2 Aa)

kc

23. f;(zAaAai)=
1=0

24. )2)(i((1i)2) = I

=

+
3=1
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+6 27 (a)) (~z~1a))

I A2 A 2f(l ~ar)AT )

+322~ A(0,a2))

Ne ;2w wil compute k;2 (4±1At2)

+ 2 fi4,'(A(1 Tz )))2

30. ~ ~ ~ A- (At2v2  4L (a2 (A~2 (Ij~ (lT a))

p., Ai)4 + A(1)

A-Lt2 )

L7n(U

+ .3,&
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/ - (AZAM 2) ,_ (A ,tAak) I

/ (At,,Aa)) 0

For I = k- I down to 0,
#2-' (zA.?,zAM 2) - jg-1 (A~e,,F)M2 + F '/i- (A~,nM 2 )

MA 4- FM2 + aI.

36. '(A= -M;

37. [ o 0 1.

The coefficient of covariance of the point estimate with M3 , namely

;'1(AXAM 3 ), is

0
.- :38. •"

The diagonal elements in the matrix above are all zero, but they are

written as they are to indicate the structure of the matrix.

P~~~~39. A7't(A-%A(MT') M [TtAnM)

40. S = [So'..., sk_-I I
4 0

= Yi ,,YiYk-i- I

"41. # (AX, AS) I PT(AZ A (M; .))MT el

+ ;"A .;
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"-.. 4a& ;" ( (o"2) (lr ))

A(ip5

+2(j4 *) A)) 2

This enables us to compute

32. (AX2 - 1 = (A-g(2) 2 jj-(2Av)

=.:nA- n ,,(n.))I)
+

33. jT'(A2*A(n-' e e)) = SUMo, o,...

34. ~ (A~nA (Zi)) A2; ( (n- 1 ei))

- 3&2 A(1)fr (Ag).

The next series of computations will give us M 2  (I + aF +

+ akFk) and fA' 1 (A.,AM2 ). The matrix A-' (A*,,AF) below

-' is a k x k matrix identically zero except in the last row:

°0 ... 0
AZ' (A)AF) =A"

35. MA ." kI
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In the following calculations we will compute coefficients of co-
r'. variances between the point estimate and estimated coefficients from
'I-.

the first order correction.

42. [=

A(1)2

+ ~
A(i)

43.=

Define Sin the obvious way, that isby

(At, All;' (AfR-))I I 'and similarly define the coefficient

45.

L~~(A* AM- (At, A , R) ,, )

..- 4 , .-,-M-))=-M ' '( M)-

e.. - . (.,.- ) .,(SA e
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+ ii;' (ApzM)a]

+ , .. a ,AM .(AM))&}

+ r

46.

+

1 IAA
+

+ A(t):

4A-'(A- A(a2)) A I-'A(7 ar ))

A(1)3

:: 26&2 (A+n A (T a 2 ))

: A ()

A()
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48. T

A()2

+

50.

+ -4,..., . -) n

+ 3VW81;62 (Ak1(A~nAV)) 2

52. A(1)3

% kSl'A n~ ~ )

- - - - - - - - - -- - --- C. C.*-*C A (1 )4



L '

4.

DERIVATION OF CORRECTIONS §4.8 82

53.,~-1 p( ,4,) = p;,( 1 (3))V;3/2

3 - 5/2i4 -2(A2,3n )As I, - AI

- /2 
- '  2(3)P (~/ v)+ 3A,

9 -3/A -' (A ( A A V)

- AV81)IJ.#'i

55~~1 n1AA

-'2 6

~~~~~~~~54. p'a.o ;( a,

56. = I7_

57. = /2 (At. A/

This enables us at last to compute the estimated second order

cumulant of T1 , namely A2(Ti):

58. -(T = tt2- +A 2/;/(zAtn p)
n

'. ++. 2f s'1(Atn AO) +2 L +
n n n29i-# + 2--+-

n n n

.'.,'. + -- + - + --
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Now we turn to the fourth order cumulant of T1 .
59. k4( = E' - 3a"

60. ji3(AZ,) = -(' +

61. ij- 3 (A_*.) = + 4;3(A_*4 2 (A +
+6,(A-2 (-(A2') _ A-,(A_*))._

By ji-(ARi) we mean lim,_,, n(R - Ry). For j = 0... , k

compute

62. A-' (ARi) = f-' (ARI) - .Rj -AsI (A.22).

63. ji-(Aa) = -A~r-' (A-(AR) + is-I(AM)a)

+ A j;(, R)w(,),

i,j=O

::64. 1 -(A (a2))=A-' (ARo) +aT -(AR)

k

+ RTjs-,(Aa) + " (Aa,&)

i---1

65. (AV) -):. A(1)2

i - 22# /-l(Aa)

A(1)3

2[7&;1 (a (2) A (1T a))

+ 3&2

A(1)4.
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A-366. u-3 (AAV) = 3-

.. + 62f-2(AgAV) V.

2 3I(AV),

. j-,.(A4 ) =3(A';-,(( 2))2 -,(,,)

7. ' + n

72. 4 (t, ) 2-

n -n
+ 4

In: nthe follin, ano/(te i th same2A3 s th sm,.ydei

7 0 . A - ,/ 2( a t n l) = 1o A - '/ 2( A t n ) _ IS A - 11 ( A t l),
.71. A-1l2(A tW AP) = 15A;1/2 (AZ,AP)V; ":I/ ,

t' , ii72. A1°(Atne ) = 15.
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73. ET,4 - 3 = ±t4 - 3 + - [4-1/2(nt3)

+ 4A-'/ 2 (lt 3 A9) + 4AA-' 1 2 (AtW)

+ 4.4-/ 2 (Atl 5 ,p) + 662 + 9O2 + 36i 0].

And therefore the fourth order cumulant estimate for T, is

74. 4(T (ET -3) - 6(k2(TI) - 1).

From this the second order correction T'2 is computed as

75. T2 =T, + o,?J + t&

n n

where

1PnA 1 1--= - (fC2(71) 1) + k4 (71

and

__ =--Cn 24

The quantiles tP for tn may be estimated from corresponding stan-

dard normal quantiles zp by

76. tp - _ +

n-

+!(.P + 2 i~zp - c~zP3 + 20,3z)

A (1 - p) confidence interval for s = Ez is then

77. (2, - n12,4/ 2 t.-p/2 , z, + n-1/2VI/2

n...................................,.-......-.,....-.'.,..,,....'-'.....,..,,
'":,'' " " " " " "":', " "I

,
.. . . . . . . . . . .

,
.

-
. . ..

"
. . .. ' .'. . . . . . . .._ . ..¢i ," ... . . .,: , e
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4.9 A note on validation of algebra. If for a given autore-

gressive model one inputs the true covariances and moments of the

residuals into the algorithms for the first and second order pivots,

one can find the true values of all the quantities estimated in this

chapter, provided the calculations here are correct. Even for the

zero order pivot, using true covariances will yield the true asymp-

totic variance constant v. This was done for an ARt3 model, and

the theoretical results thus obtained were compared with simulated

values. Simulated values are of course the correct ones, except for

the error of estimation.. In this experiment, there were 1,000 data

points per replication and 10,000 replications. Here are a few results

from the second order correction.

Quantity Theoretical Simulated

- -2(AZ2ARo) 22.23 10' 22.35.101

- 2 (AR 3
3) 83.62 81.06

.u. aAa -20.45 10- 1 -19.76 10- 1

-2 (AZ2Aaj) -25.94 -23.13

JAB" (AzAj;" (AzARo)) -28.65 -29.76
1" t (AzAp 1 (AzAC 2 ))) -24.0 -25.02

A;-3 (Az 4 Av 2 ) 32.56. I04 32.86. 104

A-3(Az 4 AV) 36.83. 103 48.90. 10

ET1 -3 15.90.10-2 -7.14.10- 2

The above figures are typical. Note that in the last two rows

above, the agreement may not be as good as one might expect, but

.o
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the numbers are in fact acceptable. ET' - 3 is one of several sec-

ond order quantities with an extremely high coefficient of variation.

Because of this, it is not possible to obtain a good estimate given

current computing constraints. Estimates of odd order moments like

/A-3(AX4Av) also tend to have a high coefficient of variation. In

summary, almost all of the estimates obtained confirm the algebra

of this chapter, and none of them arouses suspicion.

-.- - - - - - - - - - - - - - - -

.. . . . . . . .
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Numerical results

Introduction

The usual test statistic t,, is asymptotically normal, as are the

corrected statistics T, and T2 . The distributions of the latter two

statistics, however, converge more quickly to the standard normal

distribution. (See for example ABRAMOVITCH AND SINGH (1985)

and the references cited there).

To understand the data to follow, it may be helpful to give an

informal review of how we form the usual, "zero order" confidence

interval based on the standard test statistic t, , and how we form

the first and second order corrected confidence intervals.

The statistic t,. converges weakly to a standard normal random

variable. If zp denotes the p-quantile of the standard normal, the

approximation

P{zo.5 < t,, <Z.95} f .9

becomes more accurate as n increases ("g" means approximately
:88
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equal). In fact, the error is O(n-/2). The event that the true

asymptotic mean u lies in the nominal 90 percent confidence interval

constructed from tn, is precisely the event

{Z.o5 _ tn _< Z.gs},

while, for example, the event that A lies above the upper 90 percent

confidence interval bound is the same as the event

{t,I < Z.o.

This is evident by rewriting t. as Vl(*, - l),.

T, is a quadratic polynomial in tn, and T2 is a cubic polynomial

in tn, which we might indicate by writing T1(t,,) and T2 (t4). For

values of t,, of interest and for sufficiently large n, these polynomials

are approximately the identity function:

T1 (t4) = tn + 0,(n-'1/2)

T2 (t,,) = T1(t,) + Op(n-1).

These polynomial transformations may be regarded as transforming

the distribution of tn into a (more) normal distribution. Equiva-

lently, these transformations map quantiles of the distribution of t,.

into corresponding approximate normal quantiles. Not that tn, TI,

or T2 are actually normal, but each of the following statements is

more accurate than its predecessor:

P{Z.os <_ tn _ z. 95} " .9,

P{Z.os < T1 :5 z. 95} $ .9,

P{Z.o5 < T2 <_ z. 9.5} AS .9.

. . .. P " . . ° "* " " ° " -" * " "a.L ' " o - * " ° 4 4'4'", 4., - . ° . . . , .,- % ,,- - . o -
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In fact, the errors are O(n-1/2 ), o(n-'/ 2 ), and o(n- '), respectively.

The inverted transformations may be written as TF"1 (zp) and

T;'(zp). Instead of converting tn-quantiles to approximate normal

quantiles, we are doing the reverse: converting normal quantiles to

approximate t,-quantiles. The inverses of the quadratic T (.) and

of the cubic T2 (.) are not polynomials, but we have shown how

to approximate these inverses with a polynomial up to the desired

order of accuracy. These inverted polynomials are then T;1 (.) and

T-'(.). They, too, are nearly the identity for fixed values of their

arguments in the range of interest:

TFt(z) = z + Op(n - 112)

r7'(z) = r 1'(z) + Op(n-1 ).

We could base modified coniide-ce intervals on the statements

P{zo 5 T1 < z.95} A .9

P{z.os _< T2 < z.g5} P .9,

but conversion of these statements into statements about (t,, -p)

requires solving a quadratic or cubic equation. It is therefore more

convenient to base intervals on

P{T;-'(z.o5) _ tn _ 27'(z.9)} g .9

P{rT'(Z.os) < tn < (z.g5)} .9.

The event that the true mean pu lies above the lower 90 percent

confidence interval bound obtained from the first order corrected

interval, for example, is the same as the event that t4 S T(Zos).

o-'.. .-., ,- .'... . ." .. . -. .. . - -.- . . • . .-.. .-. _.. ..-... -.- ........ .-...... ..-... . . . . . .. . .. 1
; "; "," " 4; x_ .-:',:,- h'/ ; "- :- :.e-e_' " _ : - 7_,".- - ."]- :,- '. -'_,-.;- -..- . ,--'--'. - ..'- a - .S- -.-'.-'a
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In this chapter we will compare the distribution of the usual

test statistic t,1 with the standard normal distribution and with the

estimated distribution Of tn obtained from the inverted versions of

T, and T2, which we denote by T7' and T-1. As we have said, in

practice one does not use Tor T23 directly to form a confidence inter-

val because this would require solving a cubic or quadratic equation.

Instead, we use the inverted corrections discussed above and given in

equations (4.7.16) or (4.8.76). However, the comparison of T, or T2

with the standard normal is qualitatively similar to the comparison

of the inverted statistics with t,..

It would be possible for us just to report the true coverage prob-

ability for various intervals. In other words, with what frequency

does the true asymptotic mean fall above a 90 percent confidence

interval, or below it, or in the tipper half, or in the lower half? There

is, we feel, a more informative way to compare the various pivots

using what we will call p-p plots which are a variation on q-q plots.

Suppose we wish to compare two distributions, F, and F2. A

q-q plot plots the two quantiles: corresponding to a given probability.

Thus the plot includes points of the form (Fi-1 (p), Fj '(p)). If F',

is standard normal, and F2 is an empirical distribution, this is well

known as a useful way to test normality. It has the virtue of testing

the tails (which are typically of most interest to us) and also the

virtue that if F2 is non-standard normal the plot will still be a

straight line.

For our purposes, the p-p plot is better. Here we plot points
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(F (q), F2 (q)). Both axes of these plots consist of the interval [0, 1].

Suppose F2 is standard normal and F, is the distribution of t,1 , and

that the point (Pl, p2) appears on the graph. This means that the p,

quantile of t,. is the same number as the P2 quantile of the standard

normal, which in turn means that the true probability that t,. is less

than the p2 -normal quantile is pl. The true coverage probability for

a 90 percent confidence interval based on f, is then Phih - Plow

where the points (phjlh, 0.9 5) and (plow, 0.05) appear on the plot.

Referring to the first graph for Model 1, four increments in

normal probability subdivide [0, 11 on the y-axis ("Normal p" axis),

namely 0.05, 0.45, 0.45, and 0.05. The corresponding increments

are indicated along the t,, p axis, which in this case are 0.18, 0.47,

0.32 and 0.03. This means, for example, that the probability that

t. is less than or equal to the 0.05 normal quantile is actually 0.18.

Furthermore, the event that t,. is less than the 0.05 normal quantile

is the same as the event that the true mean p lies above the upper

90 percent confidence limit. For reference, the dots on the graph

indicate the points (.1, .1),.. , (1, 1).

The results of testing the inverted corrections are displayed in

a similar way. The inverted first order statistic, TT', gives for each

replication an estimate of any quantile of t,,. This estimate of the pth

quantile is Ti1 (zp), and it changes with each replication. Referring

to the second row of the tables for Model 1, the t, p coordinate

corresponding to the 0.95 T7 p coordinate gives the frequency with

which t, is less than or equal to its estimated 0.95 quantile obtained

4* **.
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from the first order correction, namely Tj' (z.95). Again, the event

that t,, is less than or equal to this estimate is the same as the event

that the true mean # lies above the lower 90 percent confidence

interval bound as given by the first order corrected method. In this

way, we see that for n = 200 data points, the probabilities that

a nominal 90 percent confidence interval covers the true mean are

0.79, 0.81, and 0.87 for the zero, first, and second order methods,

respectively.

Models tested

We will test the following four models.

(1) Autoregressive model (zi - 10) - 0.5(zc._ - 10) - 0.3(z._2 -

10) - 0.1(zi-3 - 10) = ei - 1, where the ei's are exponential

with mean 1. The three initial values, zi, z2, and Z3, are set

to seven, which is three less than the true mean. Results are

shown for n = 200 and n = 400 data points.

(2) The same model as (1), but with geometric residuals: P{e, =

j) = 2- - , for j > 0.

(3) The waiting time process in the M/M/1 queue, {W : i > 1),

with traffic intensity p = 0.5. We model this as an AR5 process

and set the initial value to 0. Results are shown for n = 1,000

data points.

(4) A Markov chain on the nonnegative integers with transition

probabilities Pi,i+L = I - pii-I = 1/3 for i > 1. This is a

discrete analog of the queue length process of the third model,

* .%.p * * * * . .

b*
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which we also model as AR5. The initial value is set to zero.

Results are shown for n = 1,000 data points.

Note that the third model violates the independence assump-

tion on the prediction errors and also the assumption of finite au-

toregressive order. We therefore would not necessarily expect good

results for this model. In the second and fourth models, either the

prediction errors or the process itself has a lattice distribution, which

again means we would not necessarily expect good results.

Data

We have chosen to do 10,000 replications, a number somewhat

larger than those used in JOHNSON (1978), GLYNN (1982a), and

Jow (1982). Suppose we want to estimate the probability that t',

is less than or equal to the 0.05 quantile of the standard normal

distribution, z. 05. Our experiment is one of binomial trials with p

approximately equal to 0.05. A 95 percent confidence interval for

the required probability will then have halfwidth of 0.0043, or about

half a percent. This is, we feel, a desirable level of accuracy for such

an experiment. The halfwidtbs corresponding to z.,50 and z.01 are

about 1.0 percent and 0.2 percent.
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5.1 Model 1.

.03: Normal p .05= Normal p

.45 .. 45

.45 .45

. 0 5 -. p .03-.
.18 .47 .32 .03 .13 .49 .35 .04

n 200n 40

.OS:T1- ,, .OS=T;- p

.45 .45

.45 .45

.03-I .05,e
.12 .41 .40 .08 .08 .42 .42 .07

n 200n 40

.45 .45

.46 .45

.09 .44 .43 .04 .6 44.44 .06

n 200n 40

........................... .:
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6.2 Model 2.

.057-Normal p .03 ZNormal p

. 45 .45

.0 - -Oa-I I
.17 .45 .33 .05 .12 .46 .37 .05

n =200

.45 

.48

45 .. 48

.12 .41 .37 .10 .08 .43 .41 .05

n 200n 40

.4 5 
.4 3 -

.45 .48

.06- t,.P .6zi.P
.0g .44 .41 .06.0 .4.3 0

n=200 n 400
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5.3 Model 3.

.05= Normal P .05:T ;-1 P

.45 .45

.45 .45

.o -. , , P t. P
.14 .41 .44 .01. 13 .41 .44 .02

n =1000 n =1000

.1

•
d i .o3= ;-, p.,

.45

45

I.1 t P
.12 .42 .44 .02

n 1000

'~~~~~~~~~~~~~~~~ ~~~~~~~..-.. ..... " .........- '".....,...'.....--.......-........-.- •.- . *.-....-......-.*-....--...-. .-. ,-. .-. ,
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5.4 Model 4.

.05= Noma P .05 Iv p

* 45 .45

.45 .45

.0Z~ I.05-. t,
.17 .40 .42 .03 .15 .39 .43 .02

n 1000 n 1000

.45 

p

.45

.05-. t.
.15 .40 .43 .02

n= 1000
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5.5 Discussion of data. The graphs indicate that the method

performs very well for both of the true autoregressive models tested.

This is to be expected, especially in the case of the first model which

satisfies all of the sufficient criteria posed in Chapter 4. In the lat-

ter two models, we also see some improvement despite the depen-

dence of residuals, but we would expect to see more improvement

if this dependence were taken into account. Using the Fast Fourier

Transform, it is possible to perform the first order correction in the

case of dependent residuals in O(n log(n)) time, but a second order

correction would be more difficult. This is one possible area of fu-

ture research. Autoregressive models have the virtue of tractability

and of being a convenient way to take into account some kind of

nonstationary behavior. But in many cases, some other method of

modeling this nonstationarity may be more desirable, and the basic

ideas and tools developed here can be used to obtain asymptotically

more accurate confidence intervals in these other contexts.

. ." . .
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